Instruction-Level
Parallelism and Its
Exploitation

"Who's first?”

“America.”

“Who's second?”

“Sir, there is no second.”

Dialog between two observers
of the sailing race later named
“The America’s Cup”and run
every few years—the inspira-
tion for John Cocke’s naming of
the IBM research processor as
“America.” This processor was
the precursor to the RS/6000
series and the first superscalar
microprocessor.

66 = Chapter Two Instruction-Level Parallelism and Its Exploitation

‘.1

Instruction-Level Parallelism: Concepts and Challenges

All processors since about 1985 use pipelining to overlap the execution of
instructions and improve performance. This potential overlap among instructions
is called instruction-level parallelism (ILP), since the instructions can be evalu-
ated in parallel. In this chapter and Appendix G, we look at a wide range of tech-
niques for extending the basic pipelining concepts by increasing the amount of
parallelism exploited among instructions.

This chapter is at a considerably more advanced level than the material on
basic pipelining in Appendix A. If you are not familiar with the ideas in Appendix
A, you should review that appendix before venturing into this chapter.

We start this chapter by looking at the limitation imposed by data and control
hazards and then turn to the topic of increasing the ability of the compiler and the
processor to exploit parallelism. These sections introduce a large number of con-
cepts, which we build on throughout this chapter and the next. While some of the
more basic material in this chapter could be understood without all of the ideas in
the first two sections, this basic material is important to later sections of this
chapter as well as to Chapter 3.

There are two largely separable approaches to exploiting ILP: an approach
that relies on hardware to help discover and exploit the parallelism dynamically,
and an approach that relies on software technology to find parallelism, statically
at compile time. Processors using the dynamic, hardware-based approach,
including the Intel Pentium series, dominate in the market; those using the static
approach, including the Intel Itanium, have more limited uses in scientific or
application-specific environments.

In the past few years, many of the techniques developed for one approach
have been exploited within a design relying primarily on the other. This chapter
introduces the basic concepts and both approaches. The next chapter focuses on
the critical issue of limitations on exploiting ILP.

In this section, we discuss features of both programs and processors that limit
the amount of parallelism that can be exploited among instructions, as well as the
critical mapping between program structure and hardware structure, which is key
to understanding whether a program property will actually limit performance and
under what circumstances.

The value of the CPI (cycles per instruction) for a pipelined processor is the
sum of the base CPI and all contributions from stalls:

Pipeline CPI = Ideal pipeline CPI + Structural stalls + Data hazard stalls + Control stalls

The ideal pipeline CPI is a measure of the maximum performance attainable by
the implementation. By reducing each of the terms of the right-hand side, we
minimize the overall pipeline CPI or, alternatively, increase the IPC (instructions
per clock). The equation above allows us to characterize various techniques by
what component of the overall CPI a technique reduces. Figure 2.1 shows the

2.1 Instruction-Level Parallelism: Concepts and Challenges = 67

Technique Reduces Section
Forwarding and bypassing Potential data hazard stalls A2
Delayed branches and simple branch scheduling Control hazard stalls A2
Basic dynamic scheduling (scoreboarding) Data hazard stalls from true dependences A7
Dynamic scheduling with renaming Data hazard stalls and stalls from antidependences 24

and output dependences
Branch prediction Control stalls 23
Issuing multiple instructions per cycle Ideal CPI 27,28
Hardware speculation Data hazard and control hazard stalls 2.6
Dynamic memory disambiguation Data hazard stalls with memory 24,26
Loop unrolling Control hazard stalls 22
Basic compiler pipeline scheduling Data hazard stalls A2,22
Compiler dependence analysis, software Ideal CPI, data hazard stalls G.2,G3
pipelining, trace scheduling
Hardware support for compiler speculation Ideal CPI, data hazard stalls, branch hazard stalls G4,G.S

Figure 2.1 The major techniques examined in Appendix A, Chapter 2, or Appendix G are shown together with
the component of the CPI equation that the technique affects.

techniques we examine in this chapter and in Appendix G, as well as the topics
covered in the introductory material in Appendix A. In this chapter we will see
that the techniques we introduce to decrease the ideal pipeline CPI can increase
the importance of dealing with hazards.

What Is Instruction-Level Parallelism?

All the techniques in this chapter exploit parallelism among instructions. The
amount of parallelism available- within a basic block—a straight-line code
sequence with no branches in except to the entry and no branches out except at
the exit—is quite small. For typical MIPS programs, the average dynamic
branch frequency is often between 15% and 25%, meaning that between three
and six instructions execute between a pair of branches. Since these instructions
are likely to depend upon one another, the amount of overlap we can exploit
within a basic block is likely to be less than the average basic block size. To
obtain substantial performance enhancements, we must exploit ILP across mul-
tiple basic blocks.

The simplest and most common way to increase the ILP is to exploit parallel-
ism among iterations of a loop. This type of parallelism is often called loop-level
parallelism. Here is a simple example of a loop, which adds two 1000-element
arrays, that is completely parallel:

68 u Chapter Two Instruction-Level Parallelism and Its Exploitation

for (i=1; i<=1000; j=i+1)
x[i1 = x[i] + y[il;

Every iteration of the loop can overlap with any other iteration, although within
each loop iteration there is little or no opportunity for overlap.

There are a number of techniques we will examine for converting such loop-
level parallelism into instruction-level parallelism. Basically, such techniques
work by unrolling the loop either statically by the compiler (as in the next sec-
tion) or dynamically by the hardware (as in Sections 2.5 and 2.6).

An important alternative method for exploiting loop-level parallelism is the
use of vector instructions (see Appendix F). A vector instruction exploits data-
level parallelism by operating on data items in parallel. For example, the above
code sequence could execute in four instructions on some vector processors: two
instructions to load the vectors x and y from memory, one instruction to add the
two vectors, and an instruction to store back the result vector. Of course, these
instructions would be pipelined and have relatively long latencies, but these
latencies may be overlapped.

Although the development of the vector ideas preceded many of the tech-
niques for exploiting ILP, processors that exploit ILP have almost completely
replaced vector-based processors in the general-purpose processor market. Vector
instruction sets, however, have seen a renaissance, at least for use in graphics,
digital signal processing, and multimedia applications.

Data Dependences and Hazards

Determining how one instruction depends on another is critical to determining
how much parallelism exists in a program and how that parallelism can be
exploited. In particular, to exploit instruction-level parallelism we must deter-
mine which instructions can be executed in parallel. If two instructions are paral-
lel, they can execute simultaneously in a pipeline of arbitrary depth without
causing any stalls, assuming the pipeline has sufficient resources (and hence no
structural hazards exist). If two instructions are dependent, they are not parallel
and must be executed in order, although they may often be partially overlapped.
The key in both cases is to determine whether an instruction is dependent on
another instruction.

Data Dependences

There are three different types of dependences: data dependences (also called
true data dependences), name dependences, and control dependences. An instruc-
tion j is data dependent on instruction i if either of the following holds:

m instruction i produces a result that may be used by instruction j, or

m instruction j is data dependent on instruction k, and instruction k is data
dependent on instruction i.

2.1 Instruction-Level Parallelism: Concepts and Challenges a 69

The second condition simply states that one instruction is dependent on another if
there exists a chain of dependences of the first type between the two instructions.
This dependence chain can be as long as the entire program. Note that a depen-
dence within a single instruction (such as ADDD R1,R1,R1) is not considered a
dependence.

For example, consider the following MIPS code sequence that increments a
vector of values in memory (starting at 0(R1), and with the last element at
8(R2)), by a scalar in register F2. (For simplicity, throughout this chapter, our
examples ignore the effects of delayed branches.)

Loop: L.D FO,0(R1) sFO=array element
ADD.D F4,FO0,F2 sadd scalar in F2
S.D F4,0(R1) sstore result
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes
BNE R1,R2,L00P ;branch R1!=R2

The data dependences in this code sequence involve both floating-point data:

Loop: L.D F0,0(R1) ;FO=array element
ADD.D P‘,FO,FZ ;add scalar in F2
S.D 4,0(R1) ;store result
and integer data:

DADDIU R1,R1,-8

BNE R1,R2,Loop

;decrement pointer
;8 bytes (per DW)
sbranch R11=R2

Both of the above dependent sequences, as shown by the arrows, have each
instruction depending on the previous one. The arrows here and in following
examples show the order that must be preserved for correct execution. The arrow
points from an instruction that must precede the instruction that the arrowhead
points to.

If two instructions are data dependent, they cannot execute simultaneously or
be completely overlapped. The dependence implies that there would be a chain of
one or more data hazards between the two instructions. (See Appendix A for a
brief description of data hazards, which we will define precisely in a few pages.)
Executing the instructions simultaneously will cause a processor with pipeline
interlocks (and a pipeline depth longer than the distance between the instructions
in cycles) to detect a hazard'and stall, thereby reducing or eliminating the over-
lap. In a processor without interlocks that relies on compiler scheduling, the com-
piler cannot schedule dependent instructions in such a way that they completely
overlap, since the program will not execute correctly. The presence of a data

70 = Chapter Two Instruction-Level Parallelism and Its Exploitation

dependence in an instruction sequence reflects a data dependence in the source
code from which the instruction sequence was generated. The effect of the origi-
nal data dependence must be preserved.

Dependences are a property of programs. Whether a given dependence results
in an actual hazard being detected and whether that hazard actually causes a stall
are properties of the pipeline organization. This difference is critical to under-
standing how instruction-level parallelism can be exploited.

(A data dependence conveys three things: (1) the possibility of a hazard, (2) the
order in which results must be calculated, and (3) an upper bound on how much
parallelism can possibly be exploited.)Such limits are explored in Chapter 3.

Since a data dependence can limit the amount of instruction-level parallelism
we can exploit, a major focus of this chapter is overcoming these limitations. A
dependence can be overcome in two different ways: maintaining the dependence
but avoiding a hazard, and eliminating a dependence by transforming the code.
Scheduling the code is the primary method used to avoid a hazard without alter-
ing a dependence, and such scheduling can be done both by the compiler and by
the hardware.

A data value may flow between instructions either through registers or
through memory locations. When the data flow occurs in a register, detecting the
dependence is straightforward since the register names are fixed in the instruc-
tions, although it gets more complicated when branches intervene and correct-
ness concerns force a compiler or hardware to be conservative.

Dependences that flow through memory locations are more difficult to detect,
since two addresses may refer to the same location but look different: For exam-
ple, 100(R4) and 20(R6) may be identical memory addresses. In addition, the
effective address of a load or store may change from one execution of the instruc-
tion to another (so that 20(R4) and 20(R4) may be different), further complicat-
ing the detection of a dependence.

In this chapter, we examine hardware for detecting data dependences that
involve memory locations, but we will see that these techniques also have limita-
tions. The compiler techniques for detecting such dependences are critical in
uncovering loop-level parallelism, as we will see in Appendix G.

Name Dependences

The second type of dependence is a name dependence. A name dependence
occurs when two instructions use the same register or memory location, called a
name, but there is no flow of data between the instructions associated with that
name. There are two types of name dependences between an instruction i that
precedes instruction j in program order:

1. An antidependence between instruction i and instruction j occurs when
instruction j writes a register or memory location that instruction i reads. The
original ordering must be preserved to ensure that i reads the correct value. In
the example on page 69, there is an antidependence between S.D and DADDIU
on register R1.

2.1 Instruction-Level Parallelism: Concepts and Challenges = 71

2. An output dependence occurs when instruction i and instruction j write the
same register or memory location. The ordering between the instructions
must be preserved to ensure that the value finally written corresponds to
instruction j.

Both antidependences and output dependences are name dependences, as
opposed to true data dependences, since there is no value being transmitted
between the instructions. Since a name dependence is not a true dependence,
instructions involved in a name dependence can execute simultaneously or be
reordered, if the name (register number or memory location) used in the instruc-
tions is changed so the instructions do not conflict.

This renaming can be more easily done for register operands, where it is
called register renaming. Register renaming can be done either statically by a
compiler or dynamically by the hardware. Before describing dependences arising
from branches, let’s examine the relationship between dependences and pipeline
data hazards.

Data Hazards

A hazard is created whenever there is a dependence between instructions, and
they are close enough that the overlap during execution would change the order
of access to the operand involved in the dependence. Because of the dependence,
we must preserve what is called program order, that is, the order that the instruc-
tions would execute in if executed sequentially one at a time as determined by the
original source program. The goal of both our software and hardware techniques
is to exploit parallelism by preserving program order only where it affects the out-
come of the program. Detecting and avoiding hazards ensures that necessary pro-
gram order is preserved.

Data hazards, which are informally described in Appendix A, may be classi-
fied as one of three types, depending on the order of read and write accesses in
the instructions. By convention, the hazards are named by the ordering in the pro-
gram that must be preserved by the pipeline. Consider two instructions i and j,
with i preceding j in program order. The possible data hazards are

s RAW (read after write)—j tries to read a source before i writes it, so j incor-
rectly gets the old value. This hazard is the most common type and corre-
sponds to a true data dependence. Program order must be preserved to ensure
that j receives the value from i.

m WAW (write after write)—j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value writ-
ten by i rather than the value written by j in the destination. This hazard corre-
sponds to an output dependence. WAW hazards are present only in pipelines
that write in more than one pipe stage or allow an instruction to proceed even
when a previous instruction is stalled.

72 w Chapter Two Instruction-Level Parallelism and Its Exploitation

an WAR (write after read)—j tries to write a destination before it is read by i, so
i incorrectly gets the new value. This hazard arises from an antidependence.
WAR hazards cannot occur in most static issue pipelines—even deeper pipe-
lines or floating-point pipelines—because all reads are early (in ID) and all
writes are late (in WB). (See Appendix A to convince yourself.) A WAR haz-
ard occurs either when there are some instructions that write results early in
the instruction pipeline and other instructions that read a source late in the
pipeline, or when instructions are reordered, as we will see in this chapter.

Note that the RAR (read after read) case is not a hazard.

Control Dependences

The last type of dependence is a control dependence. A control dependence deter-
mines the ordering of an instruction, i, with respect to a branch instruction so that
the instruction i is executed in correct program order and only when it should be.
Every instruction, except for those in the first basic block of the program, is con-
trol dependent on some set of branches, and, in general, these control depen-
dences must be preserved to preserve program order. One of the simplest
examples of a control dependence is the dependence of the statements in the
“then” part of an if statement on the branch. For example, in the code segment

if pl {
S1;
|H

if p2
S2;
}

S1 is control dependent on p1, and S2 is control dependent on p2 but not on pl.
In general, there are two constraints imposed by control dependences:

1. An instruction that is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch. For
example, we cannot take an instruction from the then portion of an if state-
ment and move it before the if statement.

2. An instruction that is not control dependent on a branch cannot be moved
after the branch so that its execution is controlled by the branch. For example,
we cannot take a statement before the if statement and move it into the then
portion.

When processors preserve strict program order, they ensure that control
dependences are also preserved. We may be willing to execute instructions that
should not have been executed, however, thereby violating the control depen-
dences, if we can do so without affecting the correctness of the program. Con-
trol dependence is not the critical property that must be preserved. Instead, the

2.1 Instruction-Level Parallelism: Concepts and Challenges s 73

two properties critical to program correctness—and normally preserved by
maintaining both data and control dependence—are the exception behavior and
the dat

Preserving the exception behavior means that any changes in the ordering of
instruction execution must not change how exceptions are raised in the program.
Often this is relaxed to mean that the reordering of instruction execution must not
cause any new exceptions in the program. A simple example shows how main-
taining the control and data dependences can prevent such situations. Consider
this code sequence:

DADDU R2,R3,R4

BEQZ R2,L1)

LW R1,0(R2)
L1: -

In this case, it is easy to see that if we do not maintain the data dependence
involving R2, we can change the result of the program. Less obvious is the fact
that if we ignore the control dependence and move the load instruction before the
branch, the load instruction may cause a memory protection exception. Notice
that no data dependence prevents us from interchanging the BEQZ and the LW; it is
only the control dependence. To allow us to reorder these instructions (and still
preserve the data dependence), we would like to just ignore the exception when
the branch is taken. In Section 2.6, we will look at a hardware technique, specula-
twn, which allows us to overcome this exception problem. Appendix G looks at
are techniques for supporting speculation. |,

e second property preserved by maintenance of data dependences and con-
trol dependences is the data flow. The data flow is the actual flow of data values
among instructions that produce results and those that consume them. Branches
make the data flow dynamic, since they allow the source of data for a given
instruction to come from many points. Put another way, it is insufficient to just
maintain data dependences because an instruction may be data dependent on
more than one predecessor. Program order is what determines which predecessor
will actually deliver a data value to an instruction. Program order is ensured by
maintaining the control dependences.

For example, consider the following code fragment:

DADDU R1,R2,R3

BEQZ R4,L

OSuBU R1,R5,R6
L:.

OR R7,R1,R8

In this example, the value of R1 used by the OR instruction depends on whether
the branch is taken or not. Data dependence alone is not sufficient to preserve
correctness. The OR instruction is data dependent on both the DADDU and DSUBU
instructions, but preserving that order alone is insufficient for correct execution.

74 w Chapter Two Instruction-Level Parallelism and Its Exploitation

Instead, when the instructions execute, the data flow must be preserved: If the
branch is not taken, then the value of R1 computed by the DSUBU should be used
by the OR, and if the branch is taken, the value of R1 computed by the DADDU
should be used by the OR. By preserving the control dependence of the OR on the
branch, we prevent an illegal change to the data flow. For similar reasons, the
DSUBU instruction cannot be moved above the branch. Speculation, which helps
with the exception problem, will also allow us to lessen the impact of the control
dependence while still maintaining the data flow, as we will see in Section 2.6.

Sometimes we can determine that violating the control dependence cannot
affect either the exception behavior or the data flow. Consider the following code

sequence:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5, R6
DADDU R5,R4,R9
skip: OR R7,R8,R9

Suppose we knew that the register destination of the DSUBU instruction (R4) was
unused after the instruction labeled skip. (The property of whether a value will
be used by an upcoming instruction is called liveness.) If R4 were unused, then
changing the value of R4 just before the branch would not affect the data flow
since R4 would be dead (rather than live) in the code region after skip. Thus, if
R4 were dead and the existing DSUBU instruction could not generate an exception
(other than those from which the processor resumes the same process), we could
move the DSUBU instruction before the branch, since the data flow cannot be
affected by this change.

If the branch is taken, the DSUBU instruction will execute and will be useless,
but it will not affect the program results. This type of code scheduling is also a
form of speculation, often called software speculation, since the compiler is bet-
ting on the branch outcome; in this case, the bet is that the branch is usually not
taken. More ambitious compiler speculation mechanisms are discussed in
Appendix G. Normally, it will be clear when we say speculation or speculative
whether the mechanism is a hardware or software mechanism; when it is not
clear, it is best to say “hardware speculation” or “software speculation.”

Control dependence is preserved by implementing control hazard detection
that causes control stalls. Control stalls can be eliminated or reduced by a variety
of hardware and software techniques, which we examine in Section 2.3.

Basic Compiler Techniques for Exposing ILP

This section examines the use of simple compiler technology to enhance a pro-
cessor’s ability to exploit ILP. These techniques are crucial for processors that
use static issue or static scheduling. Armed with this compiler technology, we
will shortly examine the design and performance of processors using static issu-

2.2 Basic Compiler Techniques for Exposing ILP s« 75

ing. Appendix G will investigate more sophisticated compiler and associated
hardware schemes designed to enable a processor to exploit more instruction-
level parallelism.

Basic Pipeline Scheduling and Loop Unrolling

(To keep a pipeline full, parallelism among instructions must be exploited by find-
ing sequences of unrelated instructions that can be overlapped in the pipeline. To
avoid a pipeline stall, a dependent instruction must be separated from the source
instruction by a distance in clock cycles equal to the pipeline latency of that
source instruction. A compiler’s ability to perform this scheduling depends both
on the amount of ILP available in the program and on the latencies of the
functional units in the pipeline. Figure 2.2 shows the FP unit Jatencies we assume
in this chapter, unless different latencies are explicitly stated. We assume the
standard five-stage integer pipeline, so that branches have a delay of 1 clock
cycle. We assume that the functional units are fully pipelined or replicated (as
many times as the pipeline depth), so that an operation of any type can be issued
on every clock cycle and there are no structural hazards)

In this subsection, we look at how the compiler can increase the amount of
available ILP by transforming loops. This example serves both to illustrate an
important technique as well as to motivate the more powerful program transfor-
mations described in Appendix G. We will rely on the following code segment,
which adds a scalar to a vector:

for (i=1000; i>0; i=i-1)
x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iteration is
independent. We will formalize this notion in Appendix G and describe how we
can test whether loop iterations are independent at compile time. First, let’s look
at the performance of this loop, showing how we can use the parallelism to
improve its performance for a MIPS pipeline with the latencies shown above.

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Figure 2.2 Latencies of FP operations used in this chapter. The last column is the
number of intervening clock cycles needed to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit.The latency of a floating-point load
to a store is 0, since the result of the load can be bypassed without stalling the store.We
will continue to assume an integer load latency of 1 and an integer ALU operation
latency of 0.

76 w Chapter Two Instruction-Level Parallelism and Its Exploitation

The first step is to translate the above segment to MIPS assembly language. In
the following code segment, R1 is initially the address of the element in the array
with the highest address, and F2 contains the scalar value s. Register R2 is pre-
computed, so that 8(R2) is the address of the last element to operate on.

The straightforward MIPS code, not scheduled for the pipeline, looks like

this:
TN
Loop: L.D FO,0(R1) ;FO=array element
ADD.D F4,F0,F2 sadd scalar in F2
S.D Fkg&?l) ;store result

DADDUI R1,R1,#-8 sdecrement pointer
;8 bytes (per DW)
BNE R1,R2,Loop ;branch R1!=R2

Let’s start by seeing how well this loop will run when it is scheduled on a
simple pipeline for MIPS with the latencies from Figure 2.2.

Example Show how the loop would look on MIPS, both scheduled and unscheduled,
including any stalls or idle clock cycles. Schedule for delays from floating-point
operations, but remember that we are ignoring delayed branches.

Answer Without any scheduling, the loop will execute as follows, taking 9 cycles:
Clock cycle issued

Loop: L.D FO,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall 8
BNE R1,R2,Loop 9

We can schedule the loop to obtain only two stalls and reduce the time to 7
cycles:

Loop: L.D F0,0(R1)
DADDUI. R1,R1,#-8
ADD.D F4,F0,F2

N> stall
} stall
N S.D F4,8(R1)

BNE R1,R2,Loop
The stalls after ADD.D are for use by the S.D.

2.2 Basic Compiler Techniques for Exposing ILP w77

In the previous example, we complete one loop iteration and store back one
array element every 7 clock cycles, but the actual work of operating on the array
element takes just 3 (the load, add, and store) of those 7 clock cycles. The
remaining 4 clock cycles consist of loop overhead—the DADDUI and BNE—and
two stalls. To eliminate these 4 clock cycles we need to get more operations rela-
tive to the number of overhead instructions.

A simple scheme for increasing the number of instructions relative to the
branch and overhead instructions is loop unrolling. Unrolling simply replicates
the loop body multiple times, adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it eliminates
the branch, it allows instructions from different iterations to be scheduled
together. In this case, we can eliminate the data use stalls by creating additional
independent instructions within the loop body. If we simply replicated the
instructions when we unrolled the loop, the resulting use of the same registers
could prevent us from effectively scheduling the loop. Thus, we will want to use
different registers for each iteration, increasing the required number of registers.

Example

Answer

Show our loop unrolled so that there are four copies of the loop body, assuming
R1 — R2 (that is, the size of the array) is initially a multiple of 32, which means
that the number of loop iterations is a multiple of 4. Eliminate any obviously
redundant computations and do not reuse any of the registers.

Here is the result after merging the DADDUI instructions and dropping the unnec-
essary BNE operations that are duplicated during unrolling. Note that R2 must now
be set so that 32 (R2) is the starting address of the last four elements.

Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1) sdrop DADDUI & BNE
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1) ;drop DADDUI & BNE
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

We have eliminated three branches and three decrements of R1. The addresses on
the loads and stores have been compensated to allow the DADDUI instructions on
R1 to be merged. This optimization may seem trivial, but it is not; it requires sym-
bolic substitution and simplification. Symbolic substitution and simplification

78 w» Chapter Two Instruction-Level Parallelism and Its Exploitation

will rearrange expressions so as to allow constants to be collapsed, allowing an
expression such as “((i + 1) + 1)” to be rewritten as “(i +(1 + 1))” and then simpli-
fied to “(i + 2).” We will see more general forms of these optimizations that elim-
inate dependent computations in Appendix G.

Without scheduling, every operation in the unrolled loop is followed by
a dependent operation and thus will cause a stall. This loop will run in 27 clock
cycles—each LD has 1 stall, each ADDD 2, the DADDUI 1, plus 14 instruction issue
cycles—or 6.75 clock cycles for each of the four elements, but it can be sched-
uled to improve performance significantly. Loop unrolling is normally done early
in the compilation process, so that redundant computations can be exposed and
eliminated by the optimizer.

In real programs we do not usually know the upper bound on the loop. Sup-
pose it is n, and we would like to unroll the loop to make k copies of the body.
Instead of a single unrolled loop, we generate a pair of consecutive loops. The
first executes (n mod k) times and has a body that is the original loop. The second
is the unrolled body surrounded by an outer loop that iterates (n/k) times. For
large values of n, most of the execution time will be spent in the unrolled loop
body.

In the previous example, unrolling improves the performance of this loop by
eliminating overhead instructions, although it increases code size substantially.
How will the unrolled loop perform when it is scheduled for the pipeline
described earlier?

Example

Answer

Show the unrolled loop in the previous example after it has been scheduled for
the pipeline with the latencies shown in Figure 2.2.

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
F4,0(R1)
F8,-8(R1)
R1,R1,#-32
F12,16(R1)
F16,8(R1)
R1,R2,Loop

Loop:

P>rrrrrr
DO T DO o o o
o oo

.

=
[t
—

Ry

LN T VWKL >
MOOOO0OOCDOUO0D0ODO0ODOoOOUOOoO

= o

The execution time of the unrolled loop has dropped to a total of 14 clock cycles,
or 3.5 clock cycles per element, compared with 9 cycles per element before any
unrolling or scheduling and 7 cycles when scheduled but not unrolled.

2.2 Basic Compiler Techniques for Exposing ILP = 79

The gain from scheduling on the unrolled loop is even larger than on the orig-
inal loop. This increase arises because unrolling the loop exposes more computa-
tion that can be scheduled to minimize the stalls; the code above has no stalls.
Scheduling the loop in this fashion necessitates realizing that the loads and stores
are independent and can be interchanged.

Summary of the Loop Unrolling and Scheduling

Throughout this chapter and Appendix G, we will look at a variety of hardware
and software techniques that allow us to take advantage of instruction-level
parallelism to fully utilize the potential of the functional units in a processor.
The key to most of these techniques is to know wt n and how the ordering
among instructions may be changed. In our examp:e we made many such
changes, which to us, as human beings, were obviously allowable. In practice,
this process must be performed in a methodical fashion either by a compiler or
by hardware?o obtain the final unrolled code we had to make the following
decisions and transformations:

m Determine that unrolling the loop would be useful by finding that the loop
iterations were independent, except for the loop maintenance code.

m Use different registers to avoid unnecessary constraints that would be forced
by using the same registers for different computations.

» Eliminate the extra test and branch instructions and adjust the loop termina-
tion and iteration code.

m Determine that the loads and stores in the unrolled loop can be interchanged
by observing that the loads and stores from different iterations are indepen-
dent. This transformation requires analyzing the memory addresses and find-
ing that they do not refer to the same address.

s Schedule the code, preserving any dependences needed to yield the same
result as the original code.

The key requirement underlying all of these transformations is an understanding
of how one instruction depends on another and how the instructions can be
changed or reordered given the dependences.

There are three different types of limits to the gains that can be achieved by
loop unrolling: a decrease in the amount of overhead amortized with each unroll,
code size limitations, and compiler limitations. Let’s consider the question of
loop overhead first. When we unrolled the loop four times, it generated sufficient
parallelism among the instructions that the loop could be scheduled with no stall
cycles. In fact, in 14 clock cycles, only 2 cycles were loop overhead: the DADDUT,
which maintains the index value, and the BNE, which terminates the loop. If the
loop is unrolled eight times, the overhead is reduced from 1/2 cycle per original
iteration to 1/4.

80 w Chapter Two Instruction-Level Parallelism and Its Exploitation

A second limit to unrolling is the growth in code size that results. For larger
loops, the code size growth may be a concern particularly if it causes an increase
in the instruction cache miss rate.

Another factor often more important than code size is the potential shortfall
in registers that is created by aggressive unrolling and scheduling. This secondary
effect that results from instruction scheduling in large code segments is called
register pressure. It arises because scheduling code to increase ILP causes the
number of live values to increase. After aggressive instruction scheduling, it may
not be possible to allocate all the live values to registers. The transformed code,
while theoretically faster, may lose some or all of its advantage because it gener-
ates a shortage of registers. Without unrolling, aggressive scheduling is suffi-
ciently limited by branches so that register pressure is rarely a problem. The
combination of unrolling and aggressive scheduling can, however, cause this
problem. The problem becomes especially challenging in multiple-issue proces-
sors that require the exposure of more independent instruction sequences whose
execution can be overlapped. In general, the use of sophisticated high-level trans-
formations, whose potential improvements are hard to measure before detailed
code generation, has led to significant increases in the complexity of modern
compilers.

Loop unrolling is a simple but useful method for increasing the size of
straight-line code fragments that can be scheduled effectively. This transforma-
tion is useful in a variety of processors, from simple pipelines like those we have
examined so far to the multiple-issue superscalars and VLIWs explored later in
this chapter.

Reducing Branch Costs with Prediction

Because of the need to enforce control dependences through branch hazards and
stalls, branches will hurt pipeline performance. Loop unrolling is one way to
reduce the number of branch hazards; we can also reduce the performance losses
of branches by predicting how they will behave.

The behavior of branches can be predicted both statically at compile time and
dynamically by the hardware at execution time. Static branch predictors are
sometimes used in processors where the expectation is that branch behavior is
highly predictable at compile time; static prediction can also be used to assist
dynamic predictors.

Static Branch Prediction

In Appendix A, we discuss an architectural feature that supports static branch
prediction, namely, delayed branches. Being able to accurately predict a branch
at compile time is also helpful for scheduling data hazards. Loop unrolling is
another example of a technique for improving code scheduling that depends on
predicting branches.

2.3 Reducing Branch Costs with Prediction = 81

(To reorder code around branches so that it runs faster, we need to predict the
branch statically when we compile the program. There are several different meth-
ods to statically predict branch behavior. The simplest scheme is to predict a
branch as taken. This scheme has an average misprediction rate that is equal to
the untaken branch frequency, which for the SPEC programs is 34%. Unfortu-
nately, the misprediction rate for the SPEC programs ranges from not very accu-
rate (59%) to highly accurate (9%).

[A more accurate technique is to predict branches on the basis of profile infor-
mation_collected from earlier-runs. The key observation that makes this worth-
while is that the behavior of branches is often bimodally distributed; that is, an
individual branch is often highly biased toward taken or untaken. Figure 2.3
shows the success of branch prediction using this strategy. The same input data
were used for runs and for collecting the profile; other studies have shown that
changing the input so that the profile is for a different run leads to only a small
change in the accuracy of profile-based prediction,

The effectiveness of any branch prediction scheme depends both on the accu-
racy of the scheme and the frequency of conditional branches, which vary in
SPEC from 3% to 24%. The fact that the misprediction rate for the integer pro-
grams is higher and that such programs typically have a higher branch frequency
is a major limitation for static branch prediction. In the next section, we consider
dynamic branch predictors, which most recent processors have employed.

25%
22%

20%
15%

Misprediction rate
10%

E) A} & > $
& O @6:" ép &‘) Qé &oq' 6é\\bQ .-bCP
& & ¢

integer Floating point
Benchmark

Figure 2.3 Misprediction rate on SPEC92 for a profile-based predictor varies widely
but is generally better for the FP programs, which have an average misprediction
rate of 9% with a standard deviation of 4%, than for the integer programs, which
have an average misprediction rate of 15% with a standard deviation of 5%. The
actual performance depends on both the prediction accuracy and the branch fre-
quency, which vary from 3% to 24%.

82 w Chapter Two Instruction-Level Parallelism and Its Exploitation

Dynamic Branch Prediction and Branch-Prediction Buffers

(\The simplest dynamic branch-prediction scheme is a branch-prediction buffer or
branch history table. A branch-prediction buffer is a small memory indexed by
the lower portion of the address of the branch instruction. The memory contains a
bit that says whether the branch was recently taken or not. This scheme is the
simplest sort of buffer; it has no tags and is useful only to reduce the branch delay
when, it is longer than the time to compute the possible target PCs.

‘With such a buffer, we don’t know, in fact, if the prediction is correct—it may
have been put there by another branch that has the same low-order address bits.
But this doesn’t matter. The prediction is a hint that is assumed to be correct, and
fetching begins in the predicted direction. If the hint turns out to be wrong, the
prediction bit is inverted and stored back.>

This buffer is effectively a cache where every access is a hit, and, as we will
see, the performance of the buffer depends on both how often the prediction is for
the branch of interest and how accurate the prediction is when it matches. Before
we analyze the performance, it is useful to make a small, but important, improve-
ment in the accuracy of the branch-prediction scheme.)

(This simple 1-bit prediction scheme has a performance shortcoming: Even if
a branch is almost always taken, we will likely predict incorrectly twice, rather
than once, when it is not taken, since the misprediction causes the prediction bit
to be flipped.)

To remedy this weakness, 2-bit prediction schemes are often used. In a 2-bit
scheme, a prediction must miss twice before it is changed. Figure 2.4 shows the
finite-state processor for a 2-bit prediction scheme.

(A branch-prediction buffer can be implemented as a small, special “cache”
accessed with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction. If
the instruction is decoded as a branch and if the branch is predicted as taken,
fetching begins from the target as soon as the PC is known. Otherwise, sequential
fetching and executing continue. As Figure 2.4 shows, if the prediction turns out
to be wrong, the prediction bits are changeds

What kind of accuracy can be expected from a branch-prediction buffer using
2 bits per entry on real applications? Figure 2.5 shows that for the SPEC89
benchmarks a branch-prediction buffer with 4096 entries results in a prediction
accuracy ranging from over 99% to 82%, or a misprediction rate of 1% to 18%. A
4K entry buffer, like that used for these results, is considered small by 2005 stan-
dards, and a larger buffer could produce somewhat better results.

As we try to exploit more ILP, the accuracy of our branch prediction becomes
critical. As we can see in Figure 2.5, the accuracy of the predictors for integer
programs, which typically also have higher branch frequencies, is lower than for
the Joop-intensive scientific programs. We can attack this problem in two ways:
by increasing the size of the buffer and by increasing the accuracy of the scheme
we use for each prediction. A buffer with 4K entries, however, as Figure 2.6
shows, performs quite comparably to an infinite buffer, at least for benchmarks
like those in SPEC. The data in Figure 2.6 make it clear that the hit rate of the

23 Reducing Branch Costs with Prediction = 83

Not taken

Not taken
Not taken

Not taken

Figure 2.4 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a
branch that strongly favors taken or not taken—as many branches do—will be mispre-
dicted less often than with a 1-bit predictor. The 2 bits are used to encode the four
states in the system. The 2-bit scheme is actually a specialization of a more general
scheme that has an n-bit saturating counter for each entry in the prediction buffer. With
an n-bit counter, the counter can take on values between 0 and 2" - 1: When the
counter is greater than or equal to one-half of its maximum value (2" - 1), the branch is
predicted as taken; otherwise, it is predicted untaken. Studies of n-bit predictors have
shown that the 2-bit predictors do almost as well, and thus most systems rely on 2-bit
branch predictors rather than the more general n-bit predictors.

buffer is not the major limiting factor. As we mentioned above, simply increasing
the number of bits per predictor without changing the predictor structure also has
little impact. Instead, we need to look at how we might increase the accuracy of
each predictor.

Correlating Branch Predictors

The 2-bit predictor schemes use only the recent behavior of a single branch to
predict the future behavior of that branch. It may be possible to improve the pre-
diction accuracy if we also look at the recent behavior of other branches rather
than just the branch we are trying to predict. Consider a small code fragment
from the eqntott benchmark, a member of early SPEC benchmark suites that dis-
played particularly bad branch prediction behavior:

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aal=bb) {

84 w Chapter Two Instruction-Level Parallelism and Its Exploitation

nasa7

matrix300

tomcatv

doduc

SPECS8¢9 spice
benchmarks

fpppp
gce
espresso

sqntott 18%

fi 10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Figure 2.5 Prediction accuracy of a 4096-entry 2-bit prediction buffer for the
SPEC89 benchmarks. The misprediction rate for the integer benchmarks (gec,
espresso, eqntott, and li) is substantially higher (average of 11%) than that for the FP
programs (average of 4%). Omitting the FP kernels (nasa7, matrix300, and tomcatv) still
yields a higher accuracy for the FP benchmarks than for the integer benchmarks. These
data, as well as the rest of the data in this section, are taken from a branch-prediction
study done using the IBM Power architecture and optimized code for that system. See
Pan, So, and Rameh [1992]. Although this data is for an older version of a subset of the
SPEC benchmarks, the newer benchmarks are larger and would show slightly worse
behavior, especially for the integer benchmarks.

Here is the MIPS code that we would typically generate for this code frag-
ment assuming that aa and bb are assigned to registers R1 and R2:

DADDIU R3,R1,#-2

BNEZ R3,L1 sbranch bl (aal=2)
DADD R1,R0,RO ;aa=0

L1: DADDIU R3,R2,#-2
BNEZ R3,L2 sbranch b2 (bb!=2)
DADD R2,R0,R0 ;bb=0

L2: DSUBU R3,R1,R2 sR3=aa-bb
BEQZ R3,L3 ;branch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the behavior
of branch b3 is correlated with the behavior of branches bl and b2. Clearly, if
branches bl and b2 are both not taken (i.e., if the conditions both evaluate to true
and aa an are both assigned 0}, thén b3 will be taken, since aa and bb are
clearly equal. A predictor that uses only the behavior of a single branch to predict
the outcome of that branch can never capture this behavior.

2.3 Reducing Branch Costs with Prediction = 85

1%
nasa7
0%
matrix300 0% #4096 entries:
0% 2 bits per entry
% Unlimited entries:
2 bits per ent
tomcatv o per entry
doduc P
spice g
SPEC89
benchmarks
9%
%

fpppp
gee

espresso F

eqntott

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Figure 2.6 Prediction accuracy of a 4096-entry 2-bit prediction buffer versus an infi-
nite buffer for the SPEC89 benchmarks. Although this data is for an older version of a
subset of the SPEC benchmarks, the results would be comparable for newer versions
with perhaps as many as 8K entries needed to match an infinite 2-bit predictor.

Branch predictors that use the behavior of other branches to make a predic-
tion are called correlating predictors or two-level predictors. Existing correlating
predictors add information about the behavior of the most recent branches to
decide how to predict a given branch. For example, a (1,2) predictor uses the
behavior of the last branch to choose from among a pair of 2-bit branch predic-
tors in predicting a particular branch. In the general case an (m,n) predictor uses
the behavior of the last m branches to choose from 2™ branch predictors, each of
which is an n-bit predictor for a single branch. The attraction of this type of cor-
relating branch predictor is that it can yield higher prediction rates than the 2-bit
scheme and requires only a trivial amount of additional hardware.

The simplicity of the hardware comes from a simple observation: The global
history of the most recent m branches can be recorded in an m-bit shift register,
where each bit records whether the branch was taken or not taken. The branch-
prediction buffer can then be indexed using a concatenation of the low-order bits
from the branch address with the m-bit global history. For example, in a (2,2)

86 = Chapter Two Instruction-Level Parallelism and Its Exploitation

buffer with 64 total entries, the 4 low-order address bits of the branch (word
address) and the 2 global bits representing the behavior of the two most recently
executed branches form a 6-bit index that can be used to index the 64 counters.

How much better do the correlating branch predictors work when compared
with the standard 2-bit scheme? To compare them fairly, we must compare
predictors that use the same number of state bits. The number of bits in an (m,n)
predictor is

2™ x n x Number of prediction entries selected by the branch address

A 2-bit predictor with no global history is simply a (0,2) predictor.

Example

Answer

How many bits are in the (0,2) branch predictor with 4K entries? How many
entries are in a (2,2) predictor with the same number of bits?

The predictor with 4K entries has
2%x 2 x 4K = 8K bits

How many branch-selected entries are in a (2,2) predictor that has a total of 8K
bits in the prediction buffer? We know that

22 x 2 x Number of prediction entries selected by the branch = 8K

Hence, the number of prediction entries selected by the branch = 1K.

Figure 2.7 compares the misprediction rates of the earlier (0,2) predictor with
4K entries and a (2,2) predictor with 1K entries. As you can see, this correlating
predictor not only outperforms a simple 2-bit predictor with the same total num-
ber of state bits, it often outperforms a 2-bit predictor with an unlimited number
of entries.

Tournament Predictors: Adaptively Combining Local and
Global Predictors

The primary motivation for correlating branch predictors came from the observa-
tion that the standard 2-bit predictor using only local information failed on some
important branches and that, by adding global information, the performance
could be improved. Tournament predictors take this insight to the pext level, by
using multiple predictors, usually one based on _global informat formation and one based
on Jocal information, and combining them w1th a selector. Tou Tournament predictors
cé iéve both better accuracy at medium - sizes (8K—32K bits) and also make
use of very large numbers of prediction bits effectively. Existing tournament pre-
dictors use a 2-bit saturating counter per branch to choose among two different
predictors based on which predictor (local, global, or even some mix) was most

2.3 Reducing Branch Costs with Prediction = 87

W 4096 entries:
2 bits per entry

nasa7

M Unlimited entries:

#3% 3R 233

matrix300 2 bits per entry
B 1024 entries:
2.2)
tomcatv
doduc
%
spice 9%
SPEC89
benchmarks %
frppp %
12%
gee
espresso
18%
eqniott 18%
10%
i 10%
5%
0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Figure 2.7 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is
first, followed by a noncorrelating 2-bit predictor with unlimited entries and a 2-bit pre-
dictor with 2 bits of global history and a total of 1024 entries. Although this data is for
an older version of SPEC, data for more recent SPEC benchmarks would show similar
differences in accuracy.

effective in recent predictions. As in a simple 2-bit predictor, the saturating
counter requires two mispredictions before changing the identity of the preferred
predictor.

The advantage of a tournament predictor is its ability to select the right pre-
dictor for a particular branch, which is particularly crucial for the integer bench-
marks. A typical tournament predictor will select the global predictor almost 40%
of the time for the SPEC integer benchmarks and less than 15% of the time for
the SPEC FP benchmarks.

Figure 2.8 looks at the performance of three different predictors (a local 2-bit
predictor, a correlating predictor, and a tournament predictor) for different num-
bers of bits using SPEC89 as the benchmark. As we saw earlier, the prediction

88

m Chapter Two Instruction-Level Parallelism and Its Exploitation

Conditional branch
misprediction rate

0 32 64 96 128 160 1892 224 256 288 320 352 384 416 448 480 512
Total predictor size

Figure 2.8 The misprediction rate for three different predictors on SPEC89 as the total number of bits is
increased. The predictors are a local 2-bit predictor, a correlating predictor, which is optimally structured in its use of
global and local information at each point in the graph, and a tournament predictor. Although this data is for an
older version of SPEC, data for more recent SPEC benchmarks would show similar behavior, perhaps converging to
the asymptotic limit at slightly larger predictor sizes.

capability of the local predictor does not improve beyond a certain size. The cor-
relating predictor shows a significant improvement, and the tournament predictor
generates slightly better performance. For more recent versions of the SPEC, the
results would be similar, but the asymptotic behavior would not be reached until
slightly larger-sized predictors.

In 2005, tournament predictors using about 30K bits are the standard in
processors like the Power5S and Pentium 4. The most advanced of these predic-
tors has been on the Alpha 21264, although both the Pentium 4 and Power5
predictors are similar. The 21264’s tournament predictor uses 4K 2-bit counters
indexed by the local branch address to choose from among a global predictor
and a local predictor. The global predictor also has 4K entries and is indexed by
the history of the last 12 branches; each entry in the global predictor is a stan-
dard 2-bit predictor.

The local predictor consists of a two-level predictor. The top level is a local
history table consisting of 1024 10-bit entries; each 10-bit entry corresponds to
the most recent 10 branch outcomes for the entry. That is, if the branch was taken
10 or more times in a row, the entry in the local history table will be all 1s. If the
branch is alternately taken and untaken, the history entry consists of alternating
0Os and 1s. This 10-bit history allows patterns of up to 10 branches to be discov-
ered and predicted. The selected entry from the local history table is used to
index a table of 1K entries consisting of 3-bit saturating counters, which provide
the local prediction. This combination, which uses a total of 29K bits, leads to
high accuracy in branch prediction.

2.4 Overcoming Data Hazards with Dynamic Scheduling = 89

To examine the effect on performance, we need to know the prediction accu-
racy as well as the branch frequency, since the importance of accurate prediction
is larger in programs with higher branch frequency. For example, the integer pro-
grams in the SPEC suite have higher branch frequencies than those of the more
easily predicted FP programs. For the 21264’s predictor, the SPECfp95 bench-
marks have less than 1 misprediction per 1000 completed instructions, and for
SPECint935, there are about 11.5 mispredictions per 1000 completed instructions.
This corresponds to misprediction rates of less than 0.5% for the floating-point
programs and about 14% for the integer programs.

Later versions of SPEC contain programs with larger data sets and larger
code, resulting in higher miss rates. Thus, the importance of branch prediction
has increased. In Section 2.11, we will look at the performance of the Pentium 4
branch predictor on programs in the SPEC2000 suite and see that, despite more
aggressive branch prediction, the branch-prediction miss rates for the integer pro-
grams remain significant.

Overcoming Data Hazards with Dynamic Scheduling

A simple statically scheduled pipeline fetches an instruction and issues it, unless
there was a data dependence between an instruction already in the pipeline and
the fetched instruction that cannot be hidden with bypassing or forwarding. (For-
warding logic reduces the effective pipeline latency so that the certain depen-
dences do not result in hazards.) If there is a data dependence that cannot be
hidden, then the hazard detection hardware stalls the pipeline starting with the
instruction that uses the result. No new instructions are fetched or issued until the
dependence is cleared.

CIn this section, we explore dynamic scheduling, in which the hardware rear-
ranges the instruction execution to reduce the stalls while maintaining data flow
and exception behavior. Dynamic scheduling offers several advantages: It
enables handling some cases when dependences are unknown at compile time
(for example, because they may involve a memory reference), and it 51mp11ﬁes
the compiler. Perhaps most importantly, it allows the processor to tolerate unpre-
dictable delays such as cache misses, by executing other code while waiting for
the miss to resolve. Almost as importantly, dynamic scheduling allows code that
was compiled with one pipeline in mind to run efficiently on a different pipeline.
In Section 2.6, we explore hardware speculation, a technique with significant per-
formance advantages, which builds on dynamic scheduling. As we will see, the
advantages of dynamic scheduling are gained at a cost of a significant increase in
hardware complexity.

Although a dynamically scheduled processor cannot change the data flow, it
tries to avoid stalling when dependences are present. In contrast, static pipeline
scheduling by the compiler (covered in Section 2.2) tries to minimize stalls by
separating dependent instructions so that they will not lead to hazards. Of course,
compiler pipeline scheduling can also be used on code destined to run on a pro-
cessor with a dynamically scheduled pipeline.

90 = Chapter Two Instruction-Level Parallelism and Its Exploitation

Dynamic Scheduling:The Idea

A major limitation of simple pipelining techniques is that they use in-order
instruction issue and execution: Instructions are issued in program order, and if
an instruction is stalled in the pipeline, no later instructions can proceed. Thus, if
there is a dependence between two closely spaced instructions in the pipeline,
this will lead to a hazard and a stall will resuit. If there are multiple functional
units, these units could lie idle. If instruction j depends on a long-running instruc-
tion {, currently in execution in the pipeline, then all instructions after j must be
stalled until / is finished and j can execute. For example, consider this code:

DIV.D FO,F2,F4
ADD.D F10,F0,F8
SuUB.D F12,F8,F14

The SUB.D instruction cannot execute because the dependence of ADD.D on
DIV.D causes the pipeline to stall; yet SUB.D is not data dependent on anything in
the pipeline. This hazard creates a performance limitation that can be eliminated
by not requiring instructions to execute in program order.

In the classic five-stage pipeline, both structural and data hazards could be
checked during instruction decode (ID): When an instruction could execute with-
out hazards, it was issued from ID knowing that all data hazards had been
resolved.

To allow us to begin executing the SUB.D in the above example, we must sep-
arate the issue process into two parts: checking for any structural hazards and
waiting for the absence of a data hazard. Thus, we still use in-order instruction
issue (i.e., instructions issued in program order), but we want an instruction to
begin execution as soon as its data operands are available. Such a pipeline does
oug:of-order execution, which implies out-of-order completion.

CDut-of-order execution introduces the possibility of WAR and WAW hazards,
which do not exist in the five-stage integer pipeline and its logical extension to an
in-order floating-point pipeline. Consider the following MIPS floating-point code

sequence:
DIV.D FO,F2,F4-
ADD.D F6,F0,F8
SuB.D F8,F10,F14
MUL.D F6,F10,F8

There is an antidependence between the ADD.D and the SUB.D, and if the pipeline
executes the SUB. D before the ADD.D (which is waiting for the DIV.D), it will vio-
late the antidependence, yielding a WAR hazard. Likewise, to avoid violating
output dependences, such as the write of F6 by MUL.D, WAW hazards must be
handled. As we will see, both these hazards are avoided by the use of register
renaming.

Out-of-order completion also creates major complications in handling excep-
tions. Dynamic scheduling with out-of-order completion must preserve exception
behavior in the sense that exactly those exceptions that would arise if the program

2.4 Overcoming Data Hazards with Dynamic Scheduling 91

were executed in strict program order actually do arise. Dynamically scheduled
processors preserve exception behavior by ensuring that no instruction can gener-
ate an exception until the processor knows that the instruction raising the excep-
tion will be executed; we will see shortly how this property can be guaranteed.

("Although exception behavior must be preserved, dynamically scheduled pro-
cessors may generate imprecise exceptions. An exception is imprecise if the pro-
cessor state when an exception is raised does not look exactly as if the
instructions were executed sequentially in strict program order. Imprecise excep-
tions can occur because of two possibilities:

1. The pipeline may have already completed instructions that are later in pro-
gram order than the instruction causing the exception.

2. The pipeline may have not yet completed some instructions that are earlier in
program order than the instruction causing the exception.)

Imprecise exceptions make it difficult to restart execution after an exception.
Rather than address these problems in this section, we will discuss a solution that
provides precise exceptions in the context of a processor with speculation in Sec-
tion 2.6. For floating-point exceptions, other solutions have been used, as dis-
cussed in Appendix J.

@) allow out-of-order execution, we essentially split the ID pipe stage of our
simple five-stage pipeline into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

An instruction fetch stage precedes the issue stage and may fetch either into an
instruction register or into a queue of pending instructions; instructions are then
issued from the register or queue. The EX stage follows the read operands stage,
just as in the five-stage pipeline. Execution may take multiple cycles, depending
on the operation.

We distinguish when an instruction begins execution and when it completes
execution; between the two times, the instruction is in execution. Our pipeline
allows multiple instructions to be in execution at the same time, and without this
capability, a major advantage of dynamic scheduling is lost. Having multiple
instructions in execution at once requires multiple functional units, pipelined
functional units, or both. Since these two capabilities—pipelined functional units
and multiple functional units—are essentially equivalent for the purposes of
pipeline control, we will assume the processor has multiple functional units.

In a dynamically scheduled pipeline, all instructions pass through the issue
stage in order (in-order issue); however, they can be stalled or bypass each other
'in the second stage (read operands) and thus enter execution out of order. Score-
boarding is a technique for allowing instructions to execute out of order when
there are sufficient resources and no data dependences; it is named after the CDC
6600 scoreboard, which developed this capability, and we discuss it in Appendix

92

w Chapter Two Instruction-Level Parallelism and Its Exploitation

A. Here, we focus on a more sophisticated technique, called Tomasulo’s algo-
rithm, that has several major enhancements over scoreboarding.

Dynamic Scheduling Using Tomasulo’s Approach

The IBM 360/91 floating-point unit used a sophisticated scheme to allow out-of-
order execution. This scheme, invented by Robert Tomasulo, tracks when oper-
ands for instructions are available, to minimize RAW hazards, and introduces
regiﬁéﬁenaming, to minimize WAW and WAR hazards. There are many varia-
tions on this scheme in modern processors, although the key concepts of tracking
instruction dependences to allow execution as soon as operands are available and
renaming registers to avoid WAR and WAW hazards are common characteristics.

IBM’s goal was to achieve high floating-point performance from an instruc-
tion set and from compilers designed for the entire 360 computer family, rather
than from specialized compilers for the high-end processors. The 360 architec-
ture had only four double-precision floating-point registers, which limits the
effectiveness of compiler scheduling; this fact was another motivation for the
Tomasulo approach. In addition, the IBM 360/91 had long memory accesses and
long floating-point delays, which Tomasulo’s algorithm was designed to overcome.
At the end of the section, we will see that Tomasulo’s algorithm can also support the
overlapped execution of multiple iterations of a loop.

We explain the algorithm, which focuses on the floating-point unit and load-
store unit, in the context of the MIPS instruction set. The primary difference
between MIPS and the 360 is the presence of register-memory instructions in the
latter architecture. Because Tomasulo’s algorithm uses a load functional unit, no
significant changes are needed to add register-memory addressing modes. The
IBM 360/91 also had pipelined functional units, rather than multiple functional
units, but we describe the algorithm as if there were multiple functional units. It
is a simple conceptual extension to also pipeline those functional units.

As we will see, RAW hazards are avoided by executing an instruction only
when its operands are available. WAR and WAW hazards, which arise from name
dependences, are eliminated by register renaming. Register renaming eliminates
these hazards by renaming all destination registers, including those with a pend-
ing read or write for an earlier instruction, so that the out-of-order write does not
affect any instructions that depend on an earlier value of an operand.

To better understand how register renaming eliminates WAR and WAW haz-
ards, consider the following example code sequence that includes both a potential
WAR and WAW hazard:

DIV.D FO,F2,F4

ADD.D F6,F0,F8) ,np 6
S.D F6,0(R1)%
SuB.D F8,F10,F14 -

ot
5 B

MUL.D F6,F10,F8 -

2.4 Overcoming Data Hazards with Dynamic Scheduling = 93

There is an antidependence between the ADD.D and the SUB.D and an output
dependence between the ADD. D and the MUL. D, leading to two possible hazards: a
WAR hazard on the use of F8 by ADD.D and a WAW hazard since the ADD.D may
finish later than the MUL.D. There are also three true data dependences: between
the DIV.D and the ADD.D, between the SUB.D and the MUL.D, and between the
ADD.D and the S.D.

These two name dependences can both be eliminated by register renaming.
For simplicity, assume the existence of two temporary registers, S and T. Using S
and T, the sequence can be rewritten without any dependences as

DIV.D FO,F2,F4 on)
ADD.D S,F0,F8 o - dg eliwival o
S.D $,0(R1) ceal P
SUB.D T,F10,F18 4 »lo e&o®

MUL.D F6,F10,T

In addition, any subsequent uses of F8 must be replaced by the register T. In this
code segment, the renaming process can be done statically by the compiler. Find-
ing any uses of F8 that are later in the code requires either sophisticated compiler
analysis or hardware support, since there may be intervening branches between
the above code segment and a later use of F8. As we will see, Tomasulo’s algo-
rithm can handle renaming across branches.

(In Tomasulo’s scheme, register renaming is provided by reservation stations,
which buffer the operands of instructions waiting to issue. The basic idea is that a
reservation station fetches and buffers an operand as soon as it is available, elimi-
nating the fieed to get the operand from a register. In addition, pending instruc-
tions designate the reservation station that will provide their input. Finally, when
successive writes to a register overlap in execution, only the last one is actually
used to update the register. As instructions are issued, the register specifiers for
pending operands are renamed to the names of the reservation station, which pro-
vides register renaming.

Since there can be more reservation stations than real registers, the technique
can even eliminate hazards arising from name dependences that could not be
eliminated by a compiler. As we explore the components of Tomasulo’s scheme,
we will return to the topic of register renaming and see exactly how the renaming
occurs and how it eliminates WAR and WAW hazards. 5

The use of reservation stations, rather than a centralized register file, leads to
two other important properties| First, hazard detection and execution control are
distributed: The information held in the reservation stations at each functional
unit determine when an instruction can begin execution at that unit. Second,
results are passed directly to functional units from the reservation stations where
they are buffered, rather than going through the registers. This bypassing is done
with a common result bus that allows all units waiting for an operand to be
loaded simultaneously (on the 360/91 this is called the common data bus, or
CDB{Qn pipelines with multiple execution units and issuing multiple instruc-

tions per clock, more than one result bus will be needed.

94 a» Chapter Two Instruction-Level Parallelism and Its Exploitation

Figure 2.9 shows the basic structure of a Tomasulo-based processor, includ-
ing both the floating-point unit and the load-store unit; none of the execution con-
trol tables are shown. Each reservation station holds an instruction that has been
issued and is awaiting execution at a functional unit, and either the operand val-
ues for that instruction, if they have already been computed, or else the names of
the reservation stations that will provide the operand values.

The load buffers and store buffers hold data or addresses coming from and
going to memory and behave almost exactly like reservation stations, so we dis-
tinguish them only when necessary. The floating-point registers are connected by
a pair of buses to the functional units and by a single bus to the store buffers. All

From instruction unit

Instruction FP registers ‘
queus

Load-store I

operations |
Floating-point S::J:nd
Store buffers operations
} Load buffers
Operation bus

3r

I 2 Resarvation f

1L stations
Data Address
Common data bus (CDB)

Figure 2.9 The basic structure of a MIPS floating-point unit using Tomasulo’s algo-
rithm. Instructions are sent from the instruction unit into the instruction queue from
which they are issued in FIFO order. The reservation stations include the operation and
the actual operands, as well as information used for detecting and resolving hazards.
Load buffers have three functions: hold the components of the effective address until it
is computed, track outstanding loads that are waiting on the memory, and hold the
results of completed loads that are waiting for the CDB. Similarly, store buffers have
three functions: hold the components of the effective address until it is computed, hold
the destination memory addresses of outstanding stores that are waiting for the data
value to store, and hold the address and value to store until the memory unit is avail-
able. All results from either the FP units or the load unit are put on the CDB, which goes
to the FP register file as well as to the reservation stations and store buffers. The FP
adders implement addition and subtraction, and the FP multipliers do multiplication
and division.

2.4 Overcoming Data Hazards with Dynamic Scheduling = 95

results from the functional units and from memory are sent on the common data
bus, which goes everywhere except to the load buffer. All reservation stations
have tag fields, employed by the pipeline control.

Before we describe the details of the reservation stations and the algorithm,

let’s look at the steps an instruction goes through. There are only three steps,
although each one can now take an arbitrary number of clock cycles:

1.

Issue—Get the next instruction from the head of the instruction queue, which
is maintained in FIFO order to ensure the maintenance of correct data flow. If
there is a matching reservation station that is empty, issue the instruction to
the station with the operand values, if they are currently in the registers. If
there is not an empty reservation station, then there is a structural hazard and
the instruction stalls until a station or buffer is freed. If the operands are not in
the registers, keep track of the functional units that will produce the operands.
This step renames registers, eliminating WAR and WAW hazards. (This stage
is sometimes called dispatch in a dynamically scheduled processor.)

Execute—If one or more of the operands is not yet available, monitor the
common data bus while waiting for it to be computed. When an operand
becomes available, it is placed into any reservation station awaiting it. When
all the operands are available, the operation can be executed at the corre-
sponding functional unit. By delaying instruction execution until the oper-
ands are available, RAW hazards are avoided. (Some dynamically scheduled
processors call this step “issue,” but we use the name ‘“execute,” which was
used in the first dynamically scheduled processor, the CDC 6600.)

Notice that several instructions could become ready in the same clock
cycle for the same functional unit. Although independent functional units
could begin execution in the same clock cycle for different instructions, if
more than one instruction is ready for a single functional unit, the unit will
have to choose among them. For the floating-point reservation stations, this
choice may be made arbitrarily; loads and stores, however, present an addi-
tional complication.

Loads and stores require a two-step execution process. The first step com-
putes the effective address when the base register is available, and the effec-
tive address is then placed in the load or store buffer. Loads in the load buffer
execute as soon as the memory unit is available. Stores in the store buffer wait
for the value to be stored before being sent to the memory unit. Loads and
stores are maintained in program order through the effective address calcula-
tion, which will help to prevent hazards through memory, as we will see
shortly.

To preserve exception behavior, no instruction is allowed to initiate exe-
cué'ron until all branches that precede the instruction in program order have
completed. This restriction guarantees that an instruction that causes an
exception during execution really would have been executed. In a processor
using branch prediction (as all dynamically scheduled processors do), this

96 = Chapter Two Instruction-Level Parallelism and Its Exploitation

means that the processor must know that the branch prediction was correct
before allowing an instruction after the branch to begin execution. If the pro-
cessor records the occurrence of the exception, but does not actually raise it,
an instruction can start execution but not stall until it enters Write Result.

As we will see, speculation provides a more flexible and more complete
method to handle exceptions, so we will delay making this enhancement and
show how speculation handles this problem later.

3. Write result—When the result is available, write it on the CDB and from
there into the registers and into any reservation stations (including store buff-
ers) waiting for this result. Stores are buffered in the store buffer until both the
value to be stored and the store address are available, then the result is written
as soon as the memory unit is free.

The data structures that detect and eliminate hazards are attached to the reser-
vation stations, to the register file, and to the load and store buffers with slightly
different information attached to different objects. These tags are essentially
names for an extended set of virtual registers used for renaming. In our example,
the tag field is a 4-bit quantity that denotes one of the five reservation stations or
one of the five load buffers. As we will see, this produces the equivalent of 10
registers that can be designated as result registers (as opposed to the 4 double-
precision registers that the 360 architecture contains). In a processor with more
real registers, we would want renaming to provide an even larger set of virtual
registers. The tag field describes which reservation station contains the instruc-
tion that will produce a result needed as a source operand.

Once an instruction has issued and is waiting for a source operand, it refers to
the operand by the reservation station number where the instruction that will
write the register has been assigned. Unused values, such as zero, indicate that
the operand is already available in the registers. Because there are more reserva-
tion stations than actual register numbers, WAW and WAR hazards are eliminated
by renaming results using reservation station numbers. Although in Tomasulo’s
scheme the reservation stations are used as the extended virtual registers, other
approaches could use a register set with additional registers or a structure like the
reorder buffer, which we will see in Section 2.6.

In Tomasulo’s scheme, as well as the subsequent methods we look at for sup-
porting speculation, results are broadcasted on a bus (the CDB), which is moni-
tored by the reservation stations. The combination of the common result bus and
the retrieval of results from the bus by the reservation stations implements the
forwarding and bypassing mechanisms used in a statically scheduled pipeline. In
doing so, however, a dynamically scheduled scheme introduces one cycle of
latency between source and result, since the matching of a result and its use can-
not be done until the Write Result stage. Thus, in a dynamically scheduled pipe-
line, the effective latency between a producing instruction and a consuming
instruction is at least one cycle longer than the latency of the functional unit pro-
ducing the result.

2.5 Dynamic Scheduling: Examples and the Algorithm = 97

In describing the operation of this scheme, we use a terminology taken from
the CDC scoreboard scheme (see Appendix A) rather than introduce new termi-
nology, showing the terminology used by the IBM 360/91 for historical refer-
ence. It is important to remember that the tags in the Tomasulo scheme refer to
the buffer or unit that will produce a result; the register names are discarded when
an instruction issues to a reservation station.

Each reservation station has seven fields:

m Op—The operation to perform on source operands S1 and S2.

m Qj, Qk—The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vj or VK, or is unnecessary. (The IBM 360/91 calls these SINKunit and
SOURCEQunit.)

® Vj, Vk—The value of the source operands. Note that only one of the V field
or the Q field is valid for each operand. For loads, the Vk field is used to
hold the offset field. (These fields are called SINK and SOURCE on the
IBM 360/91.)

m A-—Used to hold information for the memory address calculation for a load
or store. Initially, the immediate field of the instruction is stored here; after
the address calculation, the effective address is stored here.

s Busy—Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file has a field, Qi:

m Qi—The number of the reservation station that contains the operation whose
result should be stored into this register. If the value of Qi is blank (or 0), no
currently active instruction is computing a result destined for this register,
meaning that the value is simply the register contents.

The load and store buffers each have a field, A, which holds the result of the
effective address once the first step of execution has been completed.

In the next section, we will first consider some examples that show how these
mechanisms work and then examine the detailed algorithm.

Dynamic Scheduling: Examples and the Algorithm

Before we examine Tomasulo’s algorithm in detail, let’s consider a few exam-
ples, which will help illustrate how'the algorithm works.

Example

Show what the information tables look like for the following code sequence
when only the first load has completed and written its result:

98 w Chapter Two Instruction-Level Parallelism and Its Exploitation

Answer

1. L.D F6,32(R2)
2. L.D F2,44(R3)
3. MUL.D FO,F2,F4
4, SUB.D F8,F2,F6
5. DIV.D F10,F0,F6
6. ADD.D F6,F8,F2

Figure 2.10 shows the result in three tables. The numbers appended to the names
add, mult, and load stand for the tag for that reservation station—Add]1 is the tag
for the result from the first add unit. In addition we have included an instruction
status table. This table is included only to help you understand the algorithm; it is
not actually a part of the hardware. Instead, the reservation station keeps the state
of each operation that has issued.

Tomasulo’s scheme offers two major advantages over earlier and simpler
schemes: (1) the distribution of the hazard detection logic and (2) the elimination
of stalls for WAW and WAR hazards.

The first advantage arises from the distributed reservation stations and the use
of the Common Data Bus (CDB). If multiple instructions are waiting on a single
result, and each instruction already has its other operand, then the instructions
can be released simultaneously by the broadcast of the result on the CDB. If a
centralized register file were used, the units would have to read their results from
the registers when register buses are available.

The second advantage, the elimination of WAW and WAR hazards, is accom-
plished by renaming registers using the reservation stations, and by the process of
storing operands into the reservation station as soon as they are available.

"For example, the code sequence in Figure 2.10 issues both the DIV.D and the
ADD.D, even though there is a WAR hazard involving F6. The hazard is elimi-
nated in one of two ways. First, if the instruction providing the value for the
DIV.D has completed, then Vk will store the result, allowing DIV.D to execute
independent of the ADD.D (this is the case shown). On the other hand, if the L.D
had not completed, then Qk would point to the Load1 reservation station, and the
DIV.D instruction would be independent of the ADD.D. Thus, in either case, the
ADD.D can issue and begin executing. Any uses of the result of the DIV.D would
point to the reservation station, allowing the ADD.D to complete and store its
value into the registers without affecting the DIV.D.

We’ll see an example of the elimination of a WAW hazard shortly. But let’s
first look at how our earlier example continues execution. In this example, and
the ones that follow in this chapter, assume the following latencies: load is 1
clock cycle, add is 2 clock cycles, multiply is 6 clock cycles, and divide is 12
clock cycles.

2.5 Dynamic Scheduling: Examples and the Algorithm = 99

Instruction status

Instruction Issue Execute Write Result
L.D F6,32(R2) v v V

L.D F2,44(R3) v N
MUL.D FO,F2,F4)
SUB.D F8,F2,F6)
DIV.D F10,F0,F6)
ADD.D F6,F8,F2 v

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Loadl no

Load2 yes Load 45 + Regs[R3]
Addl yes SUB Mem[34 + Regs[R2]] Load2

Add2 yes ADD Addl Load2

Add3 no

Multl yes MUL Regs[F4] Load2

Mult2 yes DIV Mem[34 + Regs[R2]] Multl

Register status

Field FO F2 F4 Fé6 F8 F10 F12 ... F30
Qi Multl Load2 Add2 Addl Mult2

Figure 2.10 Reservation stations and register tags shown when all of the instructions have issued, but only
the first load instruction has completed and written its result to the CDB. The second load has completed effec-
tive address calculation, but is waiting on the memory unit.We use the array Regs[] to refer to the register file and
the array Mem[] to refer to the memory. Remember that an operand is specified by either a Q field or a V field at
any time. Notice that the ADD.D instruction, which has a WAR hazard at the WB stage, has issued and could com-
plete before the DIV.D initiates.

Example Using the same code segment as in the previous example (page 97), show what
the status tables look like when the MUL.D is ready to write its result.

Answer The result is shown in the three tables in Figure 2.11. Notice that ADD.D has com-
pleted since the operands of DIV.D were copied, thereby overcoming the WAR
hazard. Notice that even if the load of F6 was delayed, the add into F6 could be
executed without triggering a WAW hazard.

100 = Chapter Two Instruction-Level Parallelism and Its Exploitation

Instruction status
Instruction Issue Execute Write Result
L.D F6,32(R2) v v v
L.D F2,44(R3) v v v
MUL.D FO,F2,F4 v v
SUB.D F8,F2,F6 v v v
DIV.D F10,FO0,F6)
ADD.D F6,F8,F2) Y v
Reservation stations
Name Busy Op Vj Vk Q Qk A
Loadl no
Load2 no
Addl no
Add2 no
Add3 no
Multl yes MUL Mem({45 + Regs[R3]] Regs[F4]
Mult2 yes DIV Mem([34 + Regs[R2]] Multl
Register status
Field FO F2 F4 F6 F8 F10 F12 F30
Qi Multl Mult2

Figure 2.11 Multiply and divide are the only instructions not finished,

Tomasulo’s Algorithm: The Details

Figure 2.12 specifies the checks and steps that each instruction must go through.
As mentioned earlier, loads and stores go through a functional unit for effective
address computation before proceeding to independent load or store buffers.
Loads take a second execution step to access memory and then go to Write Result
to send the value from memory to the register file and/or any waiting reservation
stations. Stores complete their execution in the Write Result stage, which writes
the result to memory. Notice that all writes occur in Write Result, whether the
destination is a register or memory. This restriction simplifies Tomasulo’s algo-
rithm and is critical to its extension with speculation in Section 2.6.

2.5 Dynamic Scheduling: Examples and the Algorithm = 101

Instruction state Wait until Action or bookkeeping
Issue Station r empty if (RegisterStat[rs].Qi=0)
FP operation {RS[r].Qj « RegisterStat[rs].Qi}

else {RS[r].vj « Regs[rs]; RS[r].Qj « O0};
if (RegisterStat[rt].Qi=0)
{RS[r].Qk « RegisterStat[rt].Qi
else {RS[r].Vk « Regs[rt]; RS[r].Qk « 0};
RS[r].Busy « yes; RegisterStat[rd].Q «r;
Load or store Buffer r empty if (RegisterStat[rs].Qi=0)
{RS[r].Qj « RegisterStat[rs].Qi}
else {RS[r].Vj « Regs[rs]; RS[r].Qj « O0};
RS[r].A « imm; RS[r].Busy « yes;
Load only RegisterStat[rt].Qi «r;
Store only if (RegisterStat[rt].Qi=0)
{RS[r].Qk « RegisterStat[rs].Qi}
else {RS[r].Vk « Regs[rt]; RS[r].Qk « O};

Execute (RS[r].Qj =0) and Compute result: operands are in Vj and Vk
FP operation (RS[r].Qk =0)
Load-store RS[r}.Qj=0 & rishead of RS[r].A « RS[r].Vj + RS[r].A;
step 1 load-store queue
Load step 2 Load step 1 complete Read from Mem[RS[r].A]
Write Result Execution completeat r & Vx(if (RegisterStat[x].Qi=r) {Regs[x] « result;
FP operation CDB available RegisterStat[x].Qi « 0});
or vx(if (RS[x].Qj=r) {RS[x].Vj « result;RS[x].Qi «
load 0});
vx(if (RS[x].Qk=r) {RS[x].Vk « result;RS[x].Qk «
0})s
RS[r] .Busy « no;
Store Execution complete at r & Mem[RS[r].A] « RS[r].Vk;
RS[r].Qk=0 RS[r].Busy « no;

Figure 2.12 Steps in the algorithm and what is required for each step. For the issuing instruction, rd is the desti-
nation, rs and rt are the source register numbers, imm is the sign-extended immediate field, and r is the reservation
station or buffer that the instruction is assigned to. RS is the reservation station data structure.The value returned by
an FP unit or by the load unit is called result. RegisterStat is the register status data structure (not the register file,
which is Regs []).When an instruction is issued, the destination register has its Qi field set to the number of the buffer
or reservation station to which the instruction is issued. If the operands are available in the registers, they are stored
in the V fields. Otherwise, the Q fields are set to indicate the reservation station that will produce the values needed
as source operands. The instruction waits at the reservation station until both its operands are available, indicated by
zero in the Q fields. The Q fields are set to zero either when this instruction is issued, or when an instruction on which
this instruction depends completes and does its write back.When an instruction has finished execution and the CDB
is available, it can do its write back. All the buffers, registers, and reservation stations whose value of Qj or Qk is the
same as the completing reservation station update their values from the CDB and mark the Q fields to indicate that
values have been received. Thus, the CDB can broadcast its result to many destinations in a single clock cycle, and if
the waiting instructions have their operands, they can all begin execution on the next clock cycle. Loads go through
two steps in Execute, and stores perform slightly differently during Write Resuit, where they may have to wait for the
value to store. Remember that to preserve exception behavior, instructions should not be allowed to execute if a
branch that is earlier in program order has not yet completed. Because any concept of program order is not main-
tained after the Issue stage, this restriction is usually implemented by preventing any instruction from leaving the
Issue step, if there is a pending branch already in the pipeline. In Section 2.6, we will see how speculation support
removes this restriction.

102 « Chapter Two Instruction-Level Parallelism and Its Exploitation

Tomasulo’s Algorithm: A Loop-Based Example

To understand the full power of eliminating WAW and WAR hazards through
dynamic renaming of registers, we must look at a loop. Consider the following
simple sequence for multiplying the elements of an array by a scalar in F2:

Loop: L.D FO,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,-8
BNE R1,R2,Loop; branches if R1#R2

If we predict that branches are taken, using reservation stations will allow multi-
ple executions of this loop to proceed at once. This advantage is gained without
changing the code—in effect, the loop is unrolled dynamically by the hardware,
using the reservation stations obtained by renaming to act as additional registers.

Let’s assume we have issued all the instructions in two successive iterations
of the loop, but none of the floating-point load-stores or operations has com-
pleted. Figure 2.13 shows reservation stations, register status tables, and load and
store buffers at this point. (The integer ALU operation is ignored, and it is
assumed the branch was predicted as taken.) Once the system reaches this state,
two copies of the loop could be sustained with a CPI close to 1.0, provided the
multiplies could complete in 4 clock cycles. With a latency of 6 cycles, additional
iterations will need to be processed before the steady state can be reached. This
requires more reservation stations to hold instructions that are in execution. As
we will see later in this chapter, when extended with multiple instruction issue,
Tomasulo’s approach can sustain more than one instruction per clock.

A load and a store can safely be done out of order, provided they access dif-
ferent addresses. If a load and a store access the same address, then either

» the load is before the store in program order and interchanging them results in
a WAR hazard, or

m the store is before the load in program order and interchanging them results in
a RAW hazard. -

Similarly, interchanging two stores to the same address results in a WAW hazard.

Hence, to determine if a load can be executed at a given time, the processor
can check whether any uncompleted store that precedes the load in program order
shares the same data memory address as the load. Similarly, a store must wait
until there are no unexecuted loads or stores that are earlier in program order and
share the same data memory address. We consider a method to eliminate this
restriction in Section 2.9,

To detect such hazards, the processor must have computed the data memory
address associated with any earlier memory operation. A simple, but not neces-
sarily optimal, way to guarantee that the processor has all such addresses is to
perform the effective address calculations in program order. (We really only need

2.5 Dynamic Scheduling: Examples and the Algorithm = 103

Instruction status

Instruction From iteration Issue Execute Write Result
L.D FO0,0(R1) 1) Y
MUL.D F4,F0,F2 1 V
S.D F4,0(R1) 1 v
L.0 FO,0(R1) 2 «l vy
MUL.D F4,F0,F2 2 v
S.D F4,0(R1) 2 v
Reservation stations

Name Busy Op Vj Vk Qj Qk A
Loadl yes Load Regs[R1] +0
Load2 yes Load Regs[R1] -8
Addl no
Add2 no
Add3 no
Multl yes MUL Regs[F2] Loadl
Mult2 yes MUL Regs[F2] Load2
Storel yes Store Regs[R1] Multl
Store2 yes Store Regs[R1]} -8 Mult2

Register status
Field FO F2 F4 Fé6 F8 F10 F12 F30
Qi Load2 Mult2

Figure 2.13 Two active iterations of the loop with no instruction yet completed. Entries in the multiplier reserva-
tion stations indicate that the outstanding loads are the sources.The store reservation stations indicate that the mul-
tiply destination is the source of the value to store.

to keep the relative order between stores and other memory references; that is,
loads can be reordered freely.)

Let’s consider the situation of a load first. If we perform effective address calcu-
lation in program order, then when a load has completed effective address calcula-
tion, we can check whether there is an address conflict by examining the A field of
all active store buffers. If the load address matches the address of any active entries
in the store buffer, that load instruction is not sent to the load buffer until the con-
flicting store completes. (Some implementations bypass the value directly to the
load from a pending store, reducing the delay for this RAW hazard.)

104 « Chapter Two Instruction-Level Parallelism and Its Exploitation

Stores operate similarly, except that the processor must check for conflicts in
both the load buffers and the store buffers, since conflicting stores cannot be reor-
dered with respect to either a load or a store.

A dynamically scheduled pipeline can yield very high performance, provided
branches are predicted accurately—an issue we addressed in the last section. The
major drawback of this approach is the complexity of the Tomasulo scheme,
which requires a large amount of hardware. In particular, each reservation station
must contain an associative buffer, which must run at high speed, as well as com-
plex control logic. The performance can also be limited by the single CDB.
Although additional CDBs can be added, each CDB must interact with each res-
ervation station, and the associative tag-matching hardware would need to be
duplicated at each station for each CDB.

In Tomasulo’s scheme two different techniques are combined: the renaming
of the architectural registers to a larger set of registers and the buffering of source
operands from the register file. Source operand buffering resolves WAR hazards
that arise when the operand is available in the registers. As we will see later, it is
also possible to eliminate WAR hazards by the renaming of a register together
with the buffering of a result until no outstanding references to the earlier version
of the register remain. This approach will be used when we discuss hardware
speculation.

Tomasulo’s scheme was unused for many years after the 360/91, but was
widely adopted in multiple-issue processors starting in the 1990s for several rea-
sons:

1. It can achieve high performance without requiring the compiler to target code
to a specific pipeline structure, a valuable property in the era of shrink-
wrapped mass market software.

2. Although Tomasulo’s algorithm was designed before caches, the presence of
caches, with the inherently unpredictable delays, has become one of the
major motivations for dynamic scheduling. Qut-of-order execution allows the
processors to continue executing instructions while awaiting the completion
of a cache miss, thus hiding all or part of the cache miss penalty.

3. As processors became more aggressive in their issue capability and designers
are concerned with the performance of difficult-to-schedule code (such as
most nonnumeric code), techniques such as register renaming and dynamic
scheduling become more important.

4. Because dynamic scheduling is a key component of speculation, it was
adopted along with hardware speculation in the mid-1990s.

Hardware-Based Speculation

As we try to exploit more instruction-level parallelism, maintaining control
dependences becomes an increasing burden. Branch prediction reduces the direct
stalls attributable to branches, but for a processor executing multiple instructions

2.6 Hardware-Based Speculation = 105

per clock, just predicting branches accurately may not be sufficient to generate
the desired amount of instruction-level parallelism. A wide issue processor may
need to execute a branch every clock cycle to maintain maximum performance.
Hence, exploiting more parallelism requires that we overcome the limitation of
control dependence.

Overcoming control dependence is done by speculating on the outcome of
branches and executing the program as if our guesses were correct. This mech-
anism represents a subtle, but important, extension over branch prediction with
dynamic scheduling. In particular, with speculation, we fetch, issue, and exe-
cute instructions, as if our branch predictions were always correct; dynamic
scheduling only fetches and issues such instructions. Of course, we need mech-
anisms to handle the situation where the speculation is incorrect. Appendix G
discusses a variety of mechanisms for supporting speculation by the compiler.
In this section, we explore hardware speculation, which extends the ideas of
dynamic scheduling. T}afodm e»prni@ by Guensdr

(Hardware-based speculation combines three key ideas: dynamic branch pre-
diction to choose which instructions to execute, speculation to allow the execu-
tion of instructions before the control dependences are resolved (with the ability
to undo the effects of an incorrectly speculated sequence), and dynamic schedul-
ing to deal with the scheduling of different combinations of basic blocks. (In
comparison, dynamic scheduling without speculation only partiaily overlaps
basic blocks because it requires that a branch be resolved before actually execut-
ing any instructions in the successor basic block.)

Hardware-based speculation follows the predicted flow of data values to
choose when to execute instructions. This method of executing programs is
essentially a data flow execution: Operations execute as soon as their operands
are available.

To extend Tomasulo’s algorithm to support speculation, we must separate the
bypassing of results among instructions, which is needed to execute an instruc-
tion speculatively, from the actual completion of an instruction. By making this
separation, we can allow an instruction to execute and to bypass its results to
other instructions, without allowing the instruction to perform any updates that
cannot be undone, until we know that the instruction is no longer speculative.

Using the bypassed value is like performing a speculative register read, since
we do not know whether the instruction providing the source register value is
providing the correct result until the instruction is no longer speculative. When an
instruction is no longer speculative, we allow it to update the register file or mem-
ory; we call this additional step in the instruction execution sequence instruction
commit.

e key idea behind implementing speculation is to allow instructions to exe-
cuté out of order but to force them to commit in order and to prevent any irrevo-
cable action (such as updating state or taking an exception) until an instruction
commits. Hence, when we add speculation, we need to separate the process of
completing execution from instruction commit, since instructions may finish exe-
cution considerably before they are ready to commit. Adding this commit phase

106 w Chapter Two Instruction-Level Parallelism and Its Exploitation

to the instruction execution sequence requires an additional set of hardware buff-
ers that hold the results of instructions that have finished execution but have not
committed. This hardware buffer, which we call the reorder buffer, is also used to

pass It feusmn____gggmmmmuummnm‘@
The reorder buffer (ROB) provides additional regiSters in the same way as the

reservation stations in Tomasulo’s algorithm extend the register set. The ROB
holds the result of an instruction between the time the operation associated with
the instruction completes and the time the instruction commits. Hence, the ROB
is a source of operands for instructions, just as the reservation stations provide
operands in Tomasulo’s algorithm. The key difference is that in Tomasulo’s algo-
rithm, once an instruction writes its result, any subsequently issued instructions
will find the result in the register file. With speculation, the register file is not
updated until the instruction commits (and we know definitively that the instruc-
tion should execute); thus, the ROB supplies operands in the interval between
completion of instruction execution and instruction commit. The ROB is similar
to the store buffer in Tomasulo’s algorithm, and we integrate the function of the
store buffer into the ROB for simplicity.

Each entry in the ROB contains four fields: the instruction type, the destina-
tion field, the value field, and the ready field. The instruction type field indicates
whether the instruction is a branch (and has no destination result), a store (which
has a memory address destination), or a register operation (ALU operation or
load, which has register destinations). The destination field supplies the register
number (for loads and ALU operations) or the memory address (for stores) where
the instruction result should be written. The value field is used to hold the value
of the instruction result until the instruction commits. We will see an example of
ROB entries shortly. Finally, the teady field indicates that the instruction has
completed execution, and the value is ready.

Figure 2.14 shows the hardware structureof the processor including the ROB.
The ROB subsumes the store buffers. Stores still execute in two steps, but the
second step is performed by instruction commit. Although the renaming function
of the reservation stations is replaced by the ROB, we still need a place to buffer
operations (and operands) between the time they issue and the time they begin
execution. This function is still provided by the reservation stations. Since every
instruction has a position in the ROB until it commits, we tag a result using the
ROB entry number rather than using the reservation station number. This tagging
requires that the ROB assigned for an instruction must be tracked in the reserva-
tion station. Later in this section, we will explore an alternative implementation
that uses extra registers for renaming and the ROB only to track when instruc-
tions can commit.

Here are the four steps involved in instruction execution:

1. Issue—Get an instruction from the instruction queue. Issue the instruction if
there is an empty reservation station and an empty slot in the ROB; send the
operands to the reservation station if they are available in either the registers

2.6 Hardware-Based Speculation = 107

Reorder buffer
From instruction unit
Reg #
Instruction 9 Data
queue
FP registers
Load-store
operations
i . Operand
Floating-point buses
operations :
Load buffers
Operation bus
Store 3 . ! 2
address $ - Reservation i
Store stations
data Address
data Common data bus (CDB)

Figure 2.14 ihe basic structure of a FP unit using Tomasulo’s algorithm and
extended to handle speculation. Comparing this to Figure 2.9 on page 94, which
implemented Tomasulo's algorithm, the major change is the addition of the ROB and
the elimination of the store buffer, whose function is integrated into the ROB. This
mechanism can be extended to multiple issue by making the CDB wider to allow for
multiple completions per clock.

or the ROB. Update the control entries to indicate the buffers are in use. The
number of the ROB entry allocated for the result is also sent to the reservation
station, so that the number can be used to tag the result when it is placed on
the CDB. If either all reservations are full or the ROB is full, then instruction
issue is stalled until both have available entries.

2. Execute—If one or more of the operands is not yet available, monitor the
CDB while waiting for the register to be computed. This step checks for
RAW hazards. When both operands are available at a reservation station, exe-
cute the operation. Instructions may take multiple clock cycles in this stage,
and loads still require two steps in this stage. Stores need only have the base
register available at this step, since execution for a store at this point is only
effective address calculation.

